Herbicides Sold at Home Depot and Lowe's: A Toxicity Analysis ### Introduction Many herbicides that are widely available at home and garden stores are associated with a range of toxic impacts on human health and the environment, including harm to bees and other pollinators. To meet growing consumer demand for safer and more environmentally friendly products, home and garden stores must commit to phase out the most toxic products from their shelves and to increase the number of organic and safer alternatives that they offer. This analysis of herbicide products offered by the two largest U.S. home and garden retailers, Home Depot and Lowe's, is meant to educate consumers and to encourage the companies to take action to protect people and pollinators by rejecting toxic products and expanding safer options. | Summary of findings | We urge Home Depot and Lowe's to: | |--|---| | The main ingredient in Roundup — glyphosate — is associated with increased risk of cancer, reproductive harm, neurotoxicity, and endocrine disruption. It is also toxic to birds, bees, aquatic organisms, and contaminates water resources. | End sales of all glyphosate-based herbicides. | | Half of all herbicide products offered by Home Depot (24 of 51) and Lowe's (23 of 40) contain ingredients classified as Highly Hazardous Pesticides.* | Phase out herbicides containing highly hazardous ingredients. | | 29% of all herbicide products offered by Home Depot (15 of 51) and 17% offered by Lowe's (7 of 40) qualify as organic or least-toxic. | Expand organic and least-toxic options. | ^{*} See Pesticide Action Network List of Highly Hazardous Pesticides ### **Understanding organic and least-toxic products** Organic systems nurture soil biology to support the natural cycling of nutrients, resulting in resilient turf systems and plants. Because the use of toxic materials undermines the organic system by harming soil life, identifying compatible products is an essential component of the system. The term "organic" is backed by a robust set of criteria governed by federal law under the National Organic Program at the United States Department of Agriculture (USDA). The list of herbicides and other pesticide products allowed in organic production is highly restricted to include only least-toxic ingredients derived primarily from natural (non-synthetic) sources. A least-toxic pesticide is one that has low human and environmental health hazards. Many least-toxic pesticides are botanicals, essential oils, or are derived from plant or natural mineral sources. #### **OMRI Approved** Consumers seeking safer alternatives at home and garden stores can look for the Organic Materials Review Institute (OMRI) label. OMRI is an independent agency that reviews products against the federal organic standards, so consumers can trust that "OMRI-approved" means that a product is compatible with the National Organic Standards and is a safer alternative. However, not all products approved for organic production are listed with OMRI since the institute is not affiliated with the USDA. Consumers won't find the USDA Organic seal that's familiar from grocery shopping at home and garden stores. "Certified Organic" applies only to products grown organically, it does not apply to products used in organic production. In other words, a carrot, a bag of potato chips, or cotton may be certified organic, but the potting soil or biological pesticide used in growing these products is not certified organic. #### 25(b) Exempt Products This resource identifies least-toxic products that are 25(b) Exempt. This classification was created by the U.S. Environmental Protection Agency (EPA) to identify products that the EPA considers to be 'minimal risk' to human health. To achieve this classification, both the active and inert ingredients of a product need to be clearly identified on the label and must all meet the criteria for minimal risk. Consumers can trust that 25(b) Exempt products are safer options. ### The challenge of inert ingredients Under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), pesticide manufacturers are only required to list the active ingredients in an herbicide or other pesticide product. Therefore, neither conventional nor organic pesticides are required to reveal their inert ingredients on the product label. This creates a major challenge for assessing the toxicity of any product since inert ingredients can be more toxic than the active ingredients. And in some cases, inert ingredients can amplify the toxicity of the active ingredients. For example, research has shown that the inert ingredients in Roundup amplify the toxic effects of glyphosate on human cells. Unless the EPA publicly identifies an inert ingredient as posing a public health threat, consumers and applicators remain unaware of the possible toxicities present in the inert ingredients of herbicides and other pesticide products. There is a need for more transparency and research on inert ingredients in order to protect consumer health. # **Conventional Herbicides** ### By Product | Reta | iler | | Product Name | Active Ingredients | | | | Human He | ealth Effects | | | | | Animal & Envir | onmental Effect | ts | |--------|---------------|---|---|---|------------------------------------|---------------------------|---------------------------|--------------------------|---------------------------|--|--|---|--------------------------|--|--|--| | Lowe's | Home
Depot | Ingredient(s)
classifed
as Highly
Hazardous
Pesticide(s)* | | | Birth/
Developmental
effects | Cancer | Endocrine
Disruption | Kidney/Liver
Effects | Neurotoxicity | Reproductive/
Sexual
Dysfunction | Skin, Eye,
Mucosal
Sensitizer/
Irritant | Other | Toxic to Birds | Toxic to Bees and
Other Beneficial
Organisms | Toxic to Fish/
Aquatic
Organisms | Contamination
(groundwater,
drift, leaching) | | Х | Х | | 30 Seconds Spray
and Walk Away
Concentrate | Alkyl dimethyl benzyl
ammonium chloride
(ADBAC) | Possible ⁵⁷ | Not Likely | Suggestive ^{58¢} | Not Likely ⁶² | Possible ⁵⁹ | Likely ⁵⁸ | Yes ²⁹ | Possible
Immunotoxicity ⁵⁶ | Yes ²⁹ | Not Likely | Yes ²⁹ | Not Likely | | Х | Х | | Bayer Advanced
Brush Killer Plus | Triclopyr Triethylamine Salt | Yes ¹ | Not Likely | Suggestive ⁶⁰ | Yes ³ | Not Likely | Yes ¹ | Yes ² | | Low ^{2,61} | Low ² | Yes ² | Yes ^{1,2} | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | Х | Х | х | Bayer Advanced
Lawn Weed Killer | Dicamba, dimethylamine salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Possible ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Low to
Moderate ¹⁰ | Yes ^{11,63,64} | | | | | | Quinclorac | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ¹³ | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4, 7,63} | | | | | Bayer Advanced
Season Long | Dicamba, potassium salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | Х | Х | Х | Weed control for
Lawns | Isoxaben | Possible ⁷⁰ | Suggestive ¹⁴ | Insufficiently
Studied | Yes ¹⁵ | Not Likely | Insufficiently
Studied | Not Likely ⁷⁰ | Yes ¹⁵
(cariovasular) | Yes ^{12a} | Low ⁷⁰ | Moderate ⁷⁰ | Yes ⁶⁸ | | | | | | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | | Х | | Bonide Crabgrass
and Weed
Preventer | Dithiopyr | Not Likely | Not Likely | Yes ³⁰ | Probable ⁷³ | Insufficiently
Studied | Not Likely | Possible Mild
Irritant ⁷³ | Suggestive
Mammalian
Toxicity ⁷³ | Not Likely ⁷³ | Yes ³¹ | Yes ³⁰ | Yes ⁷² | | | Х | Х | Compare-N-Save
2, 4-D Broadleaf
Weed Control | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,23} | | | Х | Х | Compare-N-Save
Weed Killer for
Lawns | Dicamba, potassium salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | | | | Lawiis | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | | | | | Dicamba, potassium salt | Yes3 | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | | Х | х | GreenView
Broadleaf Weed
Control | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ |
Yes ⁷¹ | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | Х | X | | GreenView
Fairway Formula
with Crabgrass
Preventer | Dithiopyr | Not Likely | Not Likely | Yes ³⁰ | Probable ⁷³ | Insufficiently
Studied | Not Likely | Possible Mild
Irritant ⁷³ | Suggestive
Mammalian
Toxicity ⁷³ | Not Likely ⁷³ | Yes ³¹ | Yes ³⁰ | Yes ⁷² | | | | | | Dicamba, potassium salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | |---|---|---|---|------------------------------------|---------------------------|---|---|---------------------------|---------------------------|-----------------------------|--|---|----------------------------------|---|----------------------------------|-------------------------| | Χ | | Х | Ike's Lawn Weed
Killer | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | | | Х | | Х | Ike's Sandbur
and Crabgrass
Preventer | Pendimethalin | Yes ⁹⁷ | Possible ¹⁴ | Yes ⁵¹ | Yes ³ | Insufficiently
Studied | Yes ⁵² | Yes ⁵³ | Bioaccumulation
in Tissue ⁹⁷ | Moderate ⁹⁷ | Moderate ⁹⁷ | Yes ^{52,54} | Yes ⁵² | | Х | х | | IMAGE All-in-One | Sulfentrazone | Yes ¹⁹ | Not Likely ⁷⁶ | Insufficiently
Studied | Possible ⁷⁸ | Possible ⁷⁶ | Yes ¹⁹ | Yes ¹⁹ | Possible
Hematotoxicity ⁷⁶ | Not Likely ⁷⁸ | Moderate ⁷⁸ | Yes ¹⁹ | Yes ⁷⁸ | | ٨ | ^ | | Lawn Weed Killer | Quinclorac | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ¹³ | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | Х | Х | | IMAGE Nutsedge
Killer | Ammonium salt of Imazaquin | Possible ⁸⁰ | Suggestive ⁸¹ | Suggestive
Thyroid
Stimulting ²⁰ | Not Likely | Possible ⁸² | Possible ⁸⁰ | Possible Skin
Sensetizer ⁸⁰ | | Low to
Moderate ⁸⁰ | Low to
Moderate ⁸⁰ | Low ⁸⁰ | Not Likely | | | Х | | LESCO Dimension
Crabgrass
Preventer | Dithiopyr | Not Likely | Not Likely | Yes ³⁰ | Probable ⁷³ | Insufficiently
Studied | Not Likely | Possible Mild
Irritant ⁷³ | Suggestive
Mammalian
Toxicity ⁷³ | Not Likely ⁷³ | Yes ³¹ | Yes ³⁰ | Yes ⁷² | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | | | | | | | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | X | х | Х | LESCO Weed and
Feed Professional | Dichlorprop-p | Yes ³ | Suggestive ⁸⁴ | Insufficiently
Studied | Possible ⁸³ | Not Likely | Yes ⁸³ | Yes ⁴⁰ | Suggestive
Moderate
Mammalian
Toxicity ⁸³
Possible
Hematoxicity ⁸³ | Moderate ⁴⁰ | Low ⁸³ | Low ⁸³ | Moderate ⁸³ | | Х | х | | Lilly Miller
Moss Out! Lawn
Granules | Ferrous Sulfate
Monohydrate | Possible ^{85,86} | Suggestive ⁸⁵
Insufficiently
Studied ⁸⁶ | Insufficiently
Studied | Possible ⁸⁶ | Insufficiently
Studied | Possible ⁸⁵ | Eye Irritant ^{85,86} | Possible
Mammalian
Toxicity ¹¹²
Environmetal
Persistant ¹¹² | Low ⁸⁷ | Insufficently
Studied | Low to
Moderate ⁸⁷ | Not Likely | | Х | Х | Х | Miracle Gro
Garden Weed
Preventer | Trifluralin | Possible ^{89,90} | Likely ⁵³ | Probable ^{5,46} | Insufficiently
Studied | Yes ⁴⁷ | Yes ⁴⁸ | Yes ⁴⁸ | Possible
Hematotoxicity ⁸⁹ | Low to
Moderate ⁸⁹ | Low (Bees)/
Moderate
(Earthworms) ⁸⁹ | Yes ⁴⁸ | Yes ⁸⁸ | | | Х | Х | Monterey
Remuda
Concentrated
Herbicide | Glyphosate,
isopropylamine salt | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵ | Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | | | | | | Ammoniated soap of fatty acids | Insufficiently
Studied | Not Likely | Not Likely | Insufficiently
Studied | Not Likely | Possible (at high doses) 55 | Mild ⁵⁵ | Possible
Mutagenicity (at
high doses) ⁵⁵ | Low ⁹³ | Moderate ⁹³ | Yes ⁵⁵ | Not Likely | | Х | Х | | Natria Natural
Weed and Grass
Killer | Maleic Hydrazide | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ⁹² | Yes ⁹² | Not Likely | Not a
Sensetizer ⁴¹
Skin, Eye,
Respiratory
Irritant ⁹² | Possible
Mutagenicity
(genetic
mutation) ⁹² | Low ⁹² | Low ⁹² | Yes ⁴² | Not Likely | | | | | | 2,4-D Dimethylamine Salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | |---|---|---|--|---------------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|--------------------------------|--|---|----------------------------------|---|------------------------------------|--| | Х | Х | Х | Ortho Weed
B-Gon | Dicamba Dimethylamine
Salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | | | | | Quinclorac | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ¹³ | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | х | Х | Х | Pennington
UltraGreen
Crabgrass | Dicamba, potassium salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Possible ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Low to
Moderate ¹⁰ | Yes ^{11,63,64} | | | | | Preventer | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | Х | Х | | Pennington
Weed and Feed
Fertilizer | Prodiamine | Yes ⁴⁹ | Probable ⁴³ | Suggestive ^{43,50} | Possible ⁴⁹ | Yes ⁴³ | Possible ⁴⁹ | Skin/Eye
Irritant,
Possible
Respiratory
Irritant 94 | Possible Thyroid
Toxicity ⁹⁴ | Low ⁹⁴ | Low ⁹⁴ | Moderate ⁹⁴ | Not Likely | | Х | Х | Х | Preen Extended | Trifluralin | Possible ^{89,90} | Likely ⁵³ | Probable ^{5,46} | Insufficiently
Studied | Yes ⁴⁷ | Yes ⁴⁸ | Yes ⁴⁸ | Possible
Hematotoxicity ⁸⁹ | Low to
Moderate ⁸⁹ | Low (Bees)/
Moderate
(Earthworms) ⁸⁹ | Yes ⁴⁸ | Yes ⁸⁸ | | | | | Control | Isoxaben | Possible ⁷⁰ | Suggestive ¹⁴ | Insufficiently
Studied | Yes ¹⁵ | Not Likely | Insufficiently
Studied | Not Likely ⁷⁰ | Yes ¹⁵
(cariovasular) | Yes ^{12a} | Low ⁷⁰ | Moderate ⁷⁰ | Yes ⁶⁸ | | | | | Preen Lawn Weed | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | Х | Х | Х | Control | Dicamba, potassium salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Possible ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Low to
Moderate ¹⁰ | Yes ^{11,63,64} | | Х | Х | Х | Preen Weed
Preventer | Trifluralin | Possible ^{89,90} | Likely ⁵³ | Probable ^{5,46} | Insufficiently
Studied | Yes ⁴⁷ | Yes ⁴⁸ | Yes ⁴⁸ | Possible
Hematotoxicity ⁸⁹ | Low to
Moderate ⁸⁹ | Low (Bees)/
Moderate
(Earthworms) ⁸⁹ | Yes ⁴⁸ | Yes ⁸⁸ | | | | | | Ammoniated soap of fatty acids | Insufficiently
Studied | Not Likely | Not Likely | Insufficiently
Studied | Not Likely | Possible (at
high doses) 55 | Mild ⁵⁵ | Possible
Mutagenicity (at
high doses) ⁵⁵ | Low ⁹³ | Moderate ⁹³ | Yes ⁵⁵ | Not Likely | | | Х | | Pulverize Weed,
Brush, and Vine
Killer | Maleic Hydrazide | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ⁹² | Yes ⁹² | Not Likely | Not a
Sensetizer ⁴¹
Skin, Eye,
Respiratory
Irritant ⁹² | Possible
Mutagenicity
(genetic
mutation) ⁹² | Low ⁹² | Low ⁹² | Yes ⁴² | Not Likely for
Parent (Very High
Drift Potential
for Breakdown
Product) 42 | | | | | RM43 Total
Vegetation | Glyphosate, isopropylamine salt | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵ | Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | | | Х | Х | Control, Weed
Killer and
Preventer | Imazapyr, isopropylamine salt | Not Likely | Suggestive ⁹⁶ | Insufficiently
Studied | Suggestive ⁹⁶ | Not Likely | Insufficiently
Studied | Yes ³² | Highly Toxic ⁹⁵ | Low ⁹⁵ | Yes ³³ | Yes ³³ | Possible ⁹⁵ | | | | | Roundup Weed | Glyphosate, isopropylamine salt | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵ | Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | | X | Х | Х | and Grass Killer | Pelargonic acid | Possible ¹¹³ | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Skin and Eye
Irritant ¹⁰⁶ | | Insufficiently
Studied | Moderate ¹⁰⁶ | Moderate to
High ¹⁰³ | Insufficiently
Studied | | | | | | Glyphosate, isopropylamine salt | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵
 Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | |-----|----|----|---|------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---|---|------------------------------------|-------------------------------------|------------------------------------|---------------------------| | Х | X | x | Roundup
Extended Control
Weed and Grass | Pelargonic acid | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Skin and Eye
Irritant ¹⁰⁶ | | Insufficiently
Studied | Moderate ¹⁰⁶ | Moderate to
High ¹⁰³ | Insufficiently
Studied | | | | | Killer | Imazapic, ammonium salt | Possible ¹¹⁵ | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible ¹¹⁵ | Yes (Irritant) ¹¹⁴ | Possible Chronic
Toxicity to
Muscles ¹¹⁵ | Low ¹¹⁴ | Low ¹¹⁴ | Moderate ¹¹⁴ | Yes ¹¹⁴ | | | | | | MCPA, dimethylamine salt | Possible ¹¹⁹ | Possible ¹¹⁶ | Insufficiently
Studied | Yes ¹¹⁷ | Yes ¹¹⁸ | Yes ¹¹⁷ | Yes ¹¹⁸ | Highly Toxic ¹²¹
Possible
Hypotension ¹²¹ | Moderate to
High ¹¹⁸ | Moderate ^{12a} | Moderate ¹²¹ | Yes ^{117,120} | | Х | X | | Roundup for | Quinclorac | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ^{13a} | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | | | | Lawns | Dicamba, dimethylamine salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | | | | | Sulfentrazone | Yes ¹⁹ | Not Likely ⁷⁶ | Insufficiently
Studied | Possible ⁷⁸ | Possible ⁷⁶ | Yes ¹⁹ | Yes ¹⁹ | Possible
Hematotoxicity ⁷⁶ | Not Likely ⁷⁸ | Moderate ⁷⁸ | Yes ¹⁹ | Yes ⁷⁸ | | | | | | Glyphosate,
isopropylamine salt | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵ | Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | | Х | Х | x | Roundup 365
Max Control | Imazapic, ammonium salt | Possible ¹¹⁵ | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible ¹¹⁵ | Yes (Irritant) ¹¹⁴ | Possible Chronic
Toxicity to
Muscles ¹¹⁵ | Low ¹¹⁴ | Low ¹¹⁴ | Moderate ¹¹⁴ | Yes ¹¹⁴ | | | | | | Diquat Dibromide | Possible ⁹⁹ | Not Likely | Insufficiently
Studied | Yes ³⁴ | Not Likely | Yes ³⁵ | Yes ³⁶ | Stomach/
Intestine
Toxicity ⁹⁸
Fatal if Inhaled ⁹⁸ | Yes ³⁴ | Moderate ⁹⁸ | Yes ³⁶ | Insufficiently
Studied | | Х | Х | Х | Roundup Weed
Preventer | Pendimethalin | Yes ⁹⁷ | Possible ¹⁴ | Yes ⁵¹ | Yes ³ | Insufficiently
Studied | Yes ⁵² | Yes ⁵³ | Bioaccumulation in Tissue 97 | Moderate ⁹⁷ | Moderate ⁹⁷ | Yes ^{52,54} | Yes ⁵² | | Х | Х | Х | Scotts Halts
Crabgrass and
Grassy Weed
Preventer | Pendimethalin | Yes ⁹⁷ | Possible ¹⁴ | Yes ⁵¹ | Yes ³ | Insufficiently
Studied | Yes ⁵² | Yes ⁵³ | Bioaccumulation
in Tissue ⁹⁷ | Moderate ⁹⁷ | Moderate ⁹⁷ | Yes ^{52,54} | Yes ⁵² | | ., | ., | ,, | Scotts Turf
Builder Weed | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | Х | Х | Х | and Feed Lawn
Fertilizer | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | Х | | Х | Scotts WeedEx | Pendimethalin | Yes ⁹⁷ | Possible ¹⁴ | Yes ⁵¹ | Yes ³ | Insufficiently
Studied | Yes ⁵² | Yes ⁵³ | Bioaccumulation in Tissue 97 | Moderate ⁹⁷ | Moderate ⁹⁷ | Yes ^{52,54} | Yes ⁵² | | · · | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | | | | Cunatura sida Waad | Dicamba, dimethylamine salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | Х | Х | Х | Spectracide Weed
Stop for Lawns | Sulfentrazone | Yes ¹⁹ | Not Likely | Insufficiently
Studied | Possible ⁷⁸ | Possible ⁷⁶ | Yes ¹⁹ | Yes ¹⁹ | Possible
Hematotoxicity ⁷⁶ | Not Likely ⁷⁸ | Moderate ⁷⁸ | Yes ¹⁹ | Yes ⁷⁸ | | | | | | Quinclorac | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ¹³ | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | | | | | Dicamba, dimethylamine salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Possible ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Low to
Moderate ¹⁰ | Yes ^{11,63,64} | |---|---|---|--|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|---|---|----------------------------------|---|----------------------------------|---------------------------| | X | Х | X | Spectracide Weed | Diquat Dibromide | Possible ⁹⁹ | Not Likely | Insufficiently
Studied | Yes ³⁴ | Not Likely | Yes ³⁵ | Yes ³⁶ | Stomach/
Intestine
Toxicity ⁹⁸
Fatal if Inhaled ⁹⁸ | Yes ³⁴ | Moderate ⁹⁸ | Yes ³⁶ | Insufficiently
Studied | | | | | | Fluazifop-p-butyl | Possible ³⁷ | Insufficiently
Studied | Insufficiently
Studied | Yes ³⁷ | Insufficiently
Studied | Possible ³⁷ | No ³⁷ | Probable Spleen
Toxicity ¹⁰⁰
May Cause
Possible
Cateracts ¹⁰⁰ | Moderate ¹⁰⁰ | Low ¹⁰⁰ | Yes ³⁷ | Low ¹⁰⁰ | | | | | | Dicamba, dimethylamine salt | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | | | | Spectracide
Weed and Grass | Diquat Dibromide | Possible ⁹⁹ | Not Likely | Insufficiently
Studied | Yes ³⁴ | Not Likely | Yes ³⁵ | Yes ³⁶ | Stomach/
Intestine
Toxicity ⁹⁸
Fatal if Inhaled ⁹⁸ | Yes ³⁴ | Moderate ⁹⁸ | Yes ³⁶ | Insufficiently
Studied | | X | Х | X | Killer - Extended
Control | Fluazifop-p-butyl | Possible ³⁷ | Insufficiently
Studied | Insufficiently
Studied | Possible ³⁷ | Insufficiently
Studied | Yes ³⁷ | No ³⁷ | Probable Spleen
Toxicity ¹⁰⁰
May Cause
Cateracts ¹⁰⁰ | Moderate ¹⁰⁰ | Low ¹⁰⁰ | Yes ³⁷ | Low ¹⁰⁰ | | | | | | Oxyfluorfen | Yes ³⁸ | Possible ³⁹ | Insufficiently
Studied | Yes ³⁸ | Not Likely | Yes ³⁸ | Yes ³⁸ | Possible Spleen
Toxicity ¹⁰¹ | Moderate ¹⁰¹ | Low ¹⁰¹ | Yes ³⁸ | Insufficiently
Studied | | Х | | Х | Sta-Green Crab-Ex | Trifluralin | Possible ^{89,90} | Likely ⁵³ | Probable ^{5,46} | Insufficiently
Studied | Yes ⁴⁷ | Yes ⁴⁸ | Yes ⁴⁸ | Possible
Hematotoxicity ⁸⁹ | Low to
Moderate ⁸⁹ | Low (Bees)/
Moderate
(Earthworms) ⁸⁹ | Yes ⁴⁸ | Yes ⁸⁸ | | | | | | 2,4-D, dimethylamine salt | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | Х | | Х | Sta-Green Weed and Feed | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | | | | | | Dicamba | Yes³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Possible ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Low to
Moderate ¹⁰ | Yes ^{11,63,64} | | Х | | | TurfGro
Preemergent
Crabgrass
Control | Dithiopyr | Not Likely | Not Likely | Yes ³⁰ | Probable ⁷³ | Insufficiently
Studied | Not Likely | Possible Mild
Irritant ⁷³ | Suggestive
Mammalian
Toxicity ⁷³ | Not Likely ⁷³ | Yes ³¹ | Yes ³⁰ | Yes ⁷² | | | | | Vigoro All Season | 2,4-D, dimethylamine salt | Yes ⁴ | Yes4 | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7,63} | | | Х | Х | Weed and Feed
Lawn Fertilizer | Mecoprop-p, potassium salt | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | ^{*} See Pesticide Action Network <u>List of Highly Hazardous Pesticides</u> # **Conventional Herbicides** #### By Active Ingredient | Active Ingredients | | | | | Huma | n Health Effects | | | | | Animal & Envir | onmental Effects | | |--|--|--|---|------------------------------------|---------------------------|---------------------------|--|---|---|------------------------------------|--|-------------------------------------|--| | | Classified
as a Highly
Hazardous
Pesticide* | Birth/
Developmental
Abnormailites | Cancer | Endocrine
Disruption | Kidney/Liver
Damage | Neurotoxicity | Reproductive/
Sexual
Dysfunction | Skin, Eye, Mucosal
Sensitizer/Irritant | Other | Toxic to Birds | Toxic to Bees and
Other Beneficials | Toxic to Fish/
Aquatic Organisms | Contamination
(groundwater,
drift, leaching) | | 2,4-D, dimethylamine salt | Х | Yes ⁴ | Yes ⁴ | Probable ⁵ | Yes ⁷ | Yes ⁷ | Yes ⁶ | Yes ⁴ | | Yes ⁴ | Yes ⁴ | Yes ⁸ | Yes ^{4,7.63} | |
Alkyl dimethyl benzyl
ammonium chloride (ADBAC) | | Possible ⁵⁷ | Not Likely | Suggestive ^{58c} | Not Likely ⁶² | Possible ⁵⁹ | Likely ⁵⁸ | Yes ²⁹ | Possible
Immunotoxicity ⁵⁶ | Yes ²⁹ | Not Likely | Yes ²⁹ | Not Likely | | Ammonium salt of imazaquin | | Possible ⁸⁰ | Suggestive ⁸¹ | Suggestive (Thyroid Stimulting) 20 | Not Likely | Possible ⁸² | Possible ⁸⁰ | Possible Skin
Sensetizer ⁸⁰ | | Low to Moderate ⁸⁰ | Low to Moderate ⁸⁰ | Low ⁸⁰ | Not Likely | | Dicamba, dimethylamine salt | | Yes ³ | Suggestive ⁹ | Potential ⁶⁵ | Yes ¹⁰ | Yes ¹¹ | Yes ¹¹ | Yes ¹⁰ | | Yes ¹² | Low to
Moderate ^{10,66} | Yes ¹⁰ | Yes ^{11,63,64} | | Dichlorprop-p | Х | Yes ³ | Suggestive ⁸⁴ | Insufficiently
Studied | Possible ⁸³ | Not Likely | Yes ⁸³ | Yes ⁴⁰ | Suggestive Moderate
Mammalian Toxicity ⁸³
Possible
Hematoxicity ⁸³ | Moderate ⁴⁰ | Low ^{e3} | Low ⁸³ | Moderate ⁸³ | | Diquat Dibromide | Х | Possible ⁹⁹ | Not Likely | Insufficiently
Studied | Yes ³⁴ | Not Likely | Yes ³⁵ | Yes ³⁶ | Stomach/Intestine
Toxicity ⁹⁸
Fatal if Inhaled ⁹⁸ | Yes ³⁴ | Moderate ⁹⁸ | Yes ³⁶ | Insufficiently
Studied | | Dithiopyr | | Not Likely | Not Likely | Yes ³⁰ | Probable ⁷³ | Insufficiently
Studied | Not Likely | Possible Mild
Irritant ⁷³ | Suggestive
Mammalian Toxicity 73 | Not Likely ⁷³ | Yes ³¹ | Yes ³⁰ | Yes ⁷² | | Ferric (Iron) HEDTA | | Low ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Possible ⁷⁴ | Not a Sensitizer/
Severe Eye Irritant ⁷⁴ | Low Mutagenic
Potential ⁷⁴ | Not Likely ⁷⁴ | Moderate
(worms) ⁷⁴ | Yes (aquatic organisms)44 | Insufficiently
Studied | | Ferrous Sulfate Monohydrate | | Possible ^{85,86} | Suggestive ⁸⁵
Insufficiently
Studied ⁸⁶ | Insufficiently
Studied | Possible ⁸⁶ | Insufficiently
Studied | Possible ⁸⁵ | Eye Irritant ^{85,86} | | Low ⁸⁷ | Insufficently
Studied | Low to Moderate ⁸⁷ | Not Likely | | Fluazifop-p-butyl | Х | Possible ³⁷ | Insufficiently
Studied | Insufficiently
Studied | Yes ³⁷ | Insufficiently
Studied | Possible ³⁷ | No ³⁷ | Probable Spleen
Toxicity 100
Possible Cateracts100 | Moderate ¹⁰⁰ | Low ¹⁰⁰ | Yes ³⁷ | Low ¹⁰⁰ | | Glyphosate in the form of its isopropylamine salt | Х | Yes ²¹ | Yes ²² | Yes ²³ | Yes ²³ | Yes ²⁴ | Yes ²⁵ | Yes ^{25a} | | Yes ²⁷ | Yes ²⁸ | Yes ²⁶ | Yes ⁹¹ | | lmazapic, ammonium salt | | Possible ¹¹⁵ | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes (Irritant) ¹¹⁴ | Possible Chronic
Toxicity to
Muscles ¹¹⁵ | | Low ¹¹⁴ | Low ¹¹⁴ | Moderate ¹¹⁴ | Yes ¹¹⁴ | | Imazapyr, isopropylamine salt | | Not Likely | Suggestive ⁹⁶ | Insufficiently
Studied | Suggestive ⁹⁶ | Not Likely | Insufficiently
Studied | Yes ³² | High Acute Toxicity ⁹⁵ | Low ⁹⁵ | Yes ³³ | Yes ³³ | Possible ⁹⁵ | | Isoxaben | | Possible ⁷⁰ | Suggestive ¹⁴ | Insufficiently
Studied | Yes ¹⁵ | Not Likely | Insufficiently
Studied | Not Likely ⁷⁰ | Yes ¹⁵ (cariovasular) | Yes ^{12a} | Low ⁷⁰ | Moderate ⁷⁰ | Yes ⁶⁸ | | Maleic Hydrazide | | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ⁹² | Yes ⁹² | Not Likely | Not a Sensetizer ⁴¹
Skin, Eye,
Respiratory
Irritant ⁹² | Possible Mutagenicity
(genetic mutation) ⁹² | Low ⁹² | Low ⁹² | Yes ⁴² | Breakdown Produc
Drift Prone ⁴² | | MCPA, dimethylamine salt | | Possible ¹¹⁹ | Possible ¹¹⁶ | Insufficiently
Studied | Yes ¹¹⁷ | Yes ¹¹⁸ | Yes ¹¹⁷ | Yes ¹¹⁸ | Highly Toxic ¹²¹
Possible
Hypotension ¹²¹ | Moderate to
High ¹¹⁸ | Moderate ^{12a} | Moderate ¹²¹ | Yes ^{117,120} | BEYOND PESTICIDES | Mecoprop-p, potassium salt | Х | Yes ¹⁶ | Yes ¹⁴ | Insufficiently
Studied | Yes ¹⁶ | Yes ¹⁶ | Yes ¹⁷ | Yes ¹⁶ | Acute Toxicity ⁷¹ | Yes ^{12b} | Insufficiently
Studied | Yes ¹⁸ | Yes ⁷¹ | |------------------------------|---|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|------------------------|---|--|-------------------------------|---|------------------------|---------------------------| | Oxyfluorfen | Х | Yes ³⁸ | Possible ³⁹ | Insufficiently
Studied | Yes ³⁸ | Not Likely | Yes ³⁸ | Yes ³⁸ | Possible Spleen
Toxicity 101 | Moderate ¹⁰¹ | Low ¹⁰¹ | Yes ³⁸ | Insufficiently
Studied | | Pendimethalin | Х | Yes ⁹⁷ | Possible ¹⁴ | Yes ⁵¹ | Yes ³ | Insufficiently
Studied | Yes ⁵² | Yes ⁵³ | Bioaccumulation in Tissue 97 | Moderate ⁹⁷ | Moderate ⁹⁷ | Yes ^{52,54} | Yes ⁵² | | Prodiamine | | Yes ⁴⁹ | Probable ⁴³ | Suggestive ^{43,50} | Possible ⁹⁴ | Yes ⁴³ | Possible ⁴⁹ | Skin/Eye Irritant ⁹⁴ Possible Respiratory Irritant ⁹⁴ | Possible Thyroid
Toxicity ⁹⁴ | Low ⁹⁴ | Low ⁹⁴ | Moderate ⁹⁴ | Not Likely | | Quinclorac | | Low ^{13b} | Insufficiently
Studied | Insufficiently
Studied | Possible 79 | Possible 79 | Low ^{13b} | Yes ^{13a} | | Low ⁷⁹ | Low ⁷⁹ | Yes ^{13a} | Yes ^{13a} | | Sulfentrazone | | Yes ¹⁹ | Not Likely ⁷⁶ | Insufficiently
Studied | Possible ⁷⁸ | Possible ⁷⁶ | Yes ¹⁹ | Yes ¹⁹ | Possible
Hematotoxicity ⁷⁶ | Not Likely ⁷⁸ | Moderate ⁷⁸ | Yes ¹⁹ | Yes ⁷⁸ | | Triclopyr Triethylamine Salt | | Yes ¹ | Not Likely | Suggestive ⁶⁰ | Yes ³ | Not Likely | Yes ¹ | Yes ² | | Low ^{2,61} | Low ² | Yes ² | Yes ^{1,2} | | Trifluralin | Х | Possible ^{89,90} | Likely ⁵³ | Probable ^{5,46} | Insufficiently
Studied | Yes ⁴⁷ | Yes ⁴⁸ | Yes ⁴⁸ | Possible
Hematotoxicity ⁸⁹ | Low to Moderate ⁸⁹ | Low (Bees)/
Moderate
(Earthworms)89 | Yes ⁴⁸ | Yes ⁸⁸ | ^{*} See Pesticide Action Network List of Highly Hazardous Pesticides # **Organic and Least-Toxic Herbicides** ## By Product | Ret | ailer | OMRI
Approved
or EPA 25(b)
Exempt** | Product Name | Active
Ingredients | | | | Hı | ıman Health Effo | ects | | | | Animal & Enviro | onmental Effects | | |--------|---------------|--|---|------------------------|--|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|---------------------------|---|--|--| | Lowe's | Home
Depot | | | | Birth/
Developmental
Abnormailites | Cancer | Endocrine
Disruption | Kidney/Liver
Damage | Neurotoxicity | Reproductive/
Sexual
Dysfunction | Skin, Eye, Mucosal
Sensitizer/Irritant | Other | Toxic to Birds | Toxic to Bees and
Other Beneficials | Toxic to Fish/
Aquatic
Organisms | Contamination
(groundwater,
drift, leaching) | | Х | Х | OMRI | Avengers Weed Killer | d-Limonene | Possible ¹⁰⁴ | Not Likely | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Possible ¹⁰⁴ | Yes ¹⁰⁴ | | Insufficiently
Studied | Low (Bees) ¹⁰⁴
Moderate
(Eartthworms) ¹⁰⁴ | Moderate ¹⁰⁴ | Not Likely | | v | V | OMRI | Bonide BurnOut Weed | Caprylic Acid | Insufficiently
Studied | Non-Toxic | Non-Toxic | Non-Toxic | Insufficiently
Studied | | Х | Х | | and Grass Killer | Capric Acid | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | | Х | OMRI | Bonide Deadweed Brew | Caprylic Acid | Insufficiently
Studied | Non-Toxic | Non-Toxic | Non-Toxic | Insufficiently
Studied | | | ^ | | Bonide Deadweed Brew | Capric Acid | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | | Х | | Bonide LawnWeed Brew | Ferric (Iron)
HEDTA | Low ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Possible ⁷⁴ | Severe Eye Irritant/
Not a Sensitizer ⁷⁴ | Low Mutagenic
Potential ⁷⁴ | Not Likely ⁷⁴ | Moderate
(worms) ⁷⁴ | Yes (aquatic organisms) ⁴⁴ | Insufficiently
Studied | | | Х | | Bonide Weed Beater FE | Ferric (Iron)
HEDTA | Low ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Insufficiently
Studied | Not Likely ⁷⁴ | Possible ⁷⁴ | Severe Eye Irritant/
Not a Sensitizer ⁷⁴ | Low Mutagenic
Potential ⁷⁴ | Not Likely ⁷⁴ | Moderate
(worms) ⁷⁴ | Yes (aquatic organisms) ⁴⁴ | Insufficiently
Studied | | | Х | EPA 25(b) | Concern All Natural
Weed Prevention Plus | Corn Gluten
Meal | Not Likely | Non-Toxic | Non-Toxic | Non-Toxic | Insufficiently
Studied | | | | EPA 25(b) | | Rosemary Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible Irritant ¹⁰⁷ | May cause headaches and nausea ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Insufficiently
Studied | | | | | | Cinnamon Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes ¹⁰⁹ | Mutagenic Potential
(Genotoxic) ¹⁰⁹
Toxic in Large Doses ¹⁰⁹
Possible Gastrointestinal
Inflammation ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | | | Х | | Dr. Earth's Final Stop
Weed and Grass Killer | Clove Oil | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ¹²³ | Yes ¹²³ | Yes ¹²³ | At high doses: Cytotoxic,
Acute Respiratory
Distress, Central Nervous
System Depression ¹²³ | Insufficiently
Studied |
Insufficiently
Studied | Insufficiently
Studied | Yes(drift) 124 | | | | | | Sesame Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | | | | | Thyme Oil | Possible ¹²² | Not Likely | Not Likely | Possible ¹²² | Insufficiently
Studied | Suggestive ¹²² | Yes ¹²² | Moderate Mammal
Acute Toxicity ¹²²
Possible Gastrointestinal
Toxicity ¹²²
Possible Genotoxicity ¹²² | Low ¹²² | Low to
Moderate ¹²² | Moderate ¹²² | Low ¹²² | | X | Х | EPA 25(b) | Earth's Ally Weed and
Grass Killer | Acetic Acid | Possible ¹⁰⁵ | Not Likely | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Possible ¹⁰⁵ | Yes ¹⁰² | Ingestion may cause
severe corrosion
of the mouth and
gastrointestinal tract ¹⁰⁵ | Insufficiently
Studied | Insufficiently
Studied | Moderate ¹⁰⁵ | Possible ¹⁰⁵ | |---|---|-----------|---|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---|---|--|---------------------------|---------------------------|---------------------------|---------------------------| | | | EPA 25(b) | | Rosemary Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible Irritant ¹⁰⁷ | May cause headaches and nausea ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Insufficiently
Studied | | Х | | | Ecologic Weed and Grass
Killer | Cinnamon Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes ¹⁰⁹ | Mutagenic Potential
(Genotoxic) ¹⁰⁹
Toxic in Large Doses ¹⁰⁹
Possible Gastrointestinal
Inflammation ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | | | | EPA 25(b) | Ecosmart Weed and | Rosemary Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible Irritant ¹⁰⁷ | May cause headaches
and nausea ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Insufficiently
Studied | | Х | | | Grass Killer | Sodium Lauryl
Sulfate | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Likely ¹⁰⁸ | | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | | Х | OMRI | Green Gobbler 20%
Vinegar Ready-to-Use
Weed and Grass Killer | Acetic Acid
(Vinegar) | Possible ¹⁰⁵ | Not Likely | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Possible ¹⁰⁵ | Yes ¹⁰² | Ingestion may cause
severe corrosion
of the mouth and
gastrointestinal tract ¹⁰⁵ | Insufficiently
Studied | Insufficiently
Studied | Moderate ¹⁰⁵ | Possible ¹⁰⁵ | | Х | Х | OMRI | Green It Corn Gluten
Weed Preventer | Corn Gluten
Meal | Not Likely | Non-Toxic | Non-Toxic | Non-Toxic | Insufficiently
Studied | | | Х | OMRI | Harris 20% Vinegar
Weed Killer | Acetic Acid
(Vinegar) | Possible ¹⁰⁵ | Not Likely | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Possible ¹⁰⁵ | Yes ¹⁰² | Ingestion may cause
severe corrosion
of the mouth and
gastrointestinal tract ¹⁰⁵ | Insufficiently
Studied | Insufficiently
Studied | Moderate ¹⁰⁵ | Possible ¹⁰⁵ | | | Х | EPA 25(b) | Natural Armour Weed
and Grass Killer | Clove Oil | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ¹²³ | Yes ¹²³ | Yes ¹²³ | At high doses: Cytotoxic,
Acute Respiratory
Distress, Central Nervous
System Depression ¹²³ | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes(drift) 124 | | Х | Х | OMRI | Ortho GroundClear
Weed & Grass Killer | Ammonium
Nonanoate | Not Likely | Yes (Eye/ Skin
Irritant), Not a
Sensitizer ¹¹⁰ | Possible Genotoxicity (at high doses) ¹¹⁰ | Low ¹¹¹ | Low ¹¹¹ | Yes ¹¹¹ | Not Likely | | | Х | | Pulverize Non-Selective
Weed and Grass Killer | Ammoniated
Soap of Fatty
Acis | Insufficiently
Studied | Not Likely | Not Likely | Insufficiently
Studied | Not Likely | Possible (at
high doses) ⁵⁵ | Mild ⁵⁵ | Possible Mutagenicity
(at high doses) ⁵⁵ | Low ⁹³ | Moderate ⁹³ | Yes ⁵⁵ | Not Likely | | | х | EPA 25(b) | Safer Brand Weed
Prevention Plus Pre-
Emergent Herbicide
Control | Corn Gluten
Meal | Not Likely | Non-Toxic | Insufficiently
Studied | Non-Toxic | Insufficiently
Studied | ^{**}Approved by the <u>Organic Materials Review Institute</u> for use in organic farming and gardening or classified by the EPA as 25(b) Exempt, ie.e. minimal risk to human health # **Organic and Least-Toxic Herbicides** ### By Active Ingredient | Active Ingredients | | | | Н | uman Health Effects | | | | | Animal & Envir | onmental Effects | | |-------------------------------|--|---------------------------|---------------------------|---------------------------|---------------------------|--|---|---|---------------------------|---|-------------------------------------|--| | | Birth/
Developmental
Abnormailites | Cancer | Endocrine
Disruption | Kidney/Liver
Damage | Neurotoxicity | Reproductive/
Sexual
Dysfunction | Skin, Eye, Mucosal
Sensitizer/ Irritant | Other | Toxic to Birds | Toxic to Bees and
Other Beneficials | Toxic to Fish/
Aquatic Organisms | Contamination
(groundwater,
drift, leaching) | | Acetic Acid (Vinegar) | Possible ¹⁰⁵ | Not Likely | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Possible ¹⁰⁵ | Yes ¹⁰² | Ingestion may cause severe corrosion of the mouth and gastrointestinal tract ¹⁰⁵ | Insufficiently
Studied | Insufficiently
Studied | Moderate ¹⁰⁵ | Possible ¹⁰⁵ | | Ammoniated soap of atty acids | Insufficiently
Studied | Not Likely | Not Likely | Insufficiently
Studied | Not Likely | Possible (at high doses) 55 | Mild ⁵⁵ | Possible Mutagenicity (at high doses) ⁵⁵ | Low ⁹³ | Moderate ⁹³ | Yes ⁵⁵ | Not Likely | | Ammonium Nonanoate | Not Likely | Yes (Eye/ Skin
Irritant), Not a
Sensitizer ¹¹⁰ | Possible Genotoxicity (at high doses) ¹¹⁰ | Low ¹¹¹ | Low ¹¹¹ | Yes ¹¹¹ | Not Likely | | Capric Acid | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | Caprylic acid | Insufficiently
Studied | Non-Toxic | Non-Toxic | Non-Toxic | Insufficiently
Studied | | Cinnamon Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes ¹⁰⁹ | Mutagenic Potential (Genotoxic) ¹⁰⁹
Toxic in Large Doses ¹⁰⁹
Possible Gastrointestinal
Inflammation ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | Low ¹⁰⁹ | | Clove Oil | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Potential ¹²³ | Yes ¹²³ | Yes ¹²³ | At high doses: Cytotoxic, Acute
Respiratory Distress, Central
Nervous System Depression ¹²³ | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Yes(drift) 124 | | Corn glueton Meal | Not Likely | Non-Toxic | Insufficiently
Studied | Non-Toxic | Insufficiently
Studied | | d-Limonene | Possible ¹⁰⁴ | Not Likely | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Possible ¹⁰⁴ | Yes ¹⁰⁴ | | | Low (Bees) ¹⁰⁴
Moderate
(Eartthworms) ¹⁰⁴ | Moderate ¹⁰⁴ | Not Likely | | Pelargonic Acid | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Skin and Eye
Irritant ¹⁰⁶ | | Insufficiently
Studied | Moderate ¹⁰⁶ | Moderate to
High ¹⁰³ | Insufficiently
Studied | | Rosemary Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Possible Irritant ¹⁰⁷ | May cause headaches and nausea ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Low ¹⁰⁷ | Insufficiently
Studied | | esame Oil | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | odium Lauryl Sulfate | Insufficiently
Studied | Not Likely | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Likely ¹⁰⁸ | | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | Insufficiently
Studied | | hyme Oil | Possible ¹²² | Not Likely | Not Likely | Possible ¹²² | Insufficiently
Studied | Suggestive ¹²² | Yes ¹²² | Moderate Mammal Acute
Toxicity ¹²²
Possible Gastrointestinal Toxicity ¹²²
Possible Genotoxicity ¹²² | Low ¹²² | Low to Moderate ¹²² | Moderate ¹²² | Low ¹²² | ### **Acknowledgements** This research was compiled and analysis written by Akayla Bracey, Science and Regulatory Manager, Beyond
Pesticides and is based upon Beyond Pesticides' Pesticide Gateway, a comprehensive database of pesticide hazards; with input from Valeria Paredes, Friends of the Earth; and Kendra Klein, PhD, Friends of the Earth. ### **Methods** Friends of the Earth identified products sold by each store by searching their online catalogues, searching for products online, and by visiting local stores in San Francisco and Los Angeles. We also gave each company a chance to review the lists and make corrections. Beyond Pesticides provided the toxicity analysis for each product and active ingredient based on the available science. ### **About Beyond Pesticides** Beyond Pesticides is a national, grassroots, membership organization, which works with allies in protecting public health and the environment to lead the transition to a world free of toxic pesticides. The founders, who established Beyond Pesticides as a nonprofit membership organization in 1981, felt that without the existence of such an organized, national network, local, state, and national pesticide policy would become, under chemical industry pressure, increasingly unresponsive to public health and environmental concerns. Beyond Pesticides believes that people must have a voice in decisions that affect them directly, and decisions should not be made for us by chemical companies or by decisionmakers who either do not have all of the facts or refuse to consider them. #### **About Friends of the Earth** Friends of the Earth United States, founded by David Brower in 1969, is the U.S. voice of the world's largest federation of grassroots environmental groups, with a presence in 75 countries. Friends of the Earth works to defend the environment and champion a more healthy and just world. We have provided crucial leadership in campaigns resulting in landmark environmental laws, precedent-setting legal victories and groundbreaking reforms of domestic and international regulatory, corporate and financial institution policies. Visit www.foe.org to learn more. Any errors or omissions in this brief are the responsibility of Beyond Pesticides and Friends of the Earth U.S. ©Copyright April 2021 Beyond Pesticides and Friends of the Earth #### **Citations** - 1 Northwest Coalition for Alternatives to Pesticides (NCAP). 2000. Pesticide Factsheets: Triclopyr - 2 <u>US EPA. 1998. Reregistration Eligibility Decision (RED): Triclopyr</u> - 3 US EPA, 2000. Table 1: Toxicity Data by Category for Chemicals Listed under EPCRA Section 313. Toxic Release Inventory (TRI) Program. - 4 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: 2,4-D - 5 Illinois EPA, Endocrine Disruptors Strategy, February 1997. - 6 Northwest Coalition for Alternatives to Pesticides (NCAP), 2000, Pesticide Factsheets: 2.4-D - 7 Beyond Pesticides ChemWatch Factsheets: 2,4-D - 8 US EPA. 2005. Reregistration Eligibility Decision (RED): 2,4-D - 9 Cantor, K.P. 1992. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota. Cancer Res. 52:2447-2455. Lerro, C.C., Hofmann, J.N., Andreotti, G., Koutros, S., Parks, C.G., Blair, A., Albert, P.S., Lubin, J.H., Sandler, D.P. and Beane Freeman, L.E., 2020. Dicamba use and cancer incidence in the - 10 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Dicamba - 11 Northwest Coalition for Alternatives to Pesticides (NCAP). 2000. Pesticide Factsheets: Dicamba - a. Briggs, S.A. 1992. Basic Guide to Pesticides: Their Characteristics and Hazards. Washington, DC: The Rachel Carson Council, 98. b. Mineau, P., A. Baril, B.T. Collins, J. Duffe, G. Joerman, R. Luttik. 2001. Reference values for comparing the acute toxicity of pesticides to birds. Reviews of Environmental Contamination and - 13 a. US EPA. Reregistration Eligibility Decision (RED): Quinclorac - b. National Library of Medicine. PubChem Hazardous Substances Database: Quinclorac - 14 US EPA. 2020. EPA weight-of-evidence category, "possible human carcinogen." Office of Pesticide Programs. List of Chemicals Evaluated for Carcinogenic Potential. - 15 <u>US EPA. Integrated Risk Information System Database: Isoxaben</u> - 16 US EPA. 2007. Reregistration Eligibility Decision (RED): Mecoprop - 17 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Mecoprop - 18 Northwest Coalition for Alternatives to Pesticides (NCAP). 2004. Pesticide Factsheets: Mecoprop - 19 US EPA. 1997. Office of Prevention, Pesticides and Toxic Substances, New Active Ingredients Factsheets: Sulfentrazone - 20 US EPA. 2005. Reregistration Eligibility Decision (RED): Imazaguin - 21 Rappazzo, K.M., Warren, J.L., Davalos, A.D., Meyer, R.E., Sanders, A.P., Brownstein, N.C. and Luben, T.J., 2019. Maternal residential exposure to specific agricultural pesticide active ingredients and - 22 International Agency for Research on Cancer, World Health Organization (IARC) category, the agent (mixture) is possibly carcinogenic to humans. November 2, 2018. Northwest Coalition for Alternatives to Pesticides (NCAP). 2000. Pesticide Factsheets: Glyphosate - Zhang, L., Rana, I., Shaffer, R.M., Taioli, E. and Sheppard, L., 2019. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting - 23 Beyond Pesticides ChemWatch Factsheets: Glyphosate - 24 Neto da Silva, K., Garbin Cappellaro, L., Ueda, C.N., Rodrigues, L., Pertile Remor, A., Martins, R.D.P., Latini, A. and Glaser, V., 2020. Glyphosate-based herbicide impairs energy metabolism and - a. US EPA. 1994. Reregistration Eligibility Decision (RED): Glyphosate b. Frazier, L. and M.L. Hage. 2001. Reproductive Hazards of the Workplace. Europe: Wiley. Table 10: Partial List of Reproductive Toxins. - 26 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Glyphosate - 27 Hussain R, Ali F, Rafique A, Ghaffar A, Jabeen G, Rafay M, Liagat S, Khan I, Malik R, Khan MK, Niaz M, Akram K and Masood A, 2019. Exposure to sub-acute concentrations of glyphosate induce - Ledoux, M.L., Hettiarachchy, N., Yu, X., Howard, L. and Lee, S.O., 2019. Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control, Zgurzynski, M.I. and Lushington, G.H., 2019. Glyphosate Impact on Apis mellifera Navigation: A Combined Behavioral and Cheminformatics Study. EC Pharmacology and Toxicology, 7, pp.806-824. - 29 US EPA. 2006. Reregistration Eligibility Decision (RED): ADBAC - 30 Fluoride Action Alert Pesticide Project Factsheets: Dithiopyr - 31 Pesticide Action Network (PAN) Pesticide Database: Dithiopyr - 32 US EPA. 2006. Reregistration Eligibility Decision (RED): Imazapyr - 33 Pesticide Action Network (PAN) Pesticide Database: Imazapyr - 34 US EPA. 1995. Reregistration Eligibility Decision (RED): Diguat Dibromide - 35 New Jersey Department of Health and Senior Services, Right to Know Hazardous Substances Fact Sheets: Diquat Dibromide - 36 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Diquat Dibromide - 37 US EPA. 2005. Reregistration Eligibility Decision (RED): Fluazifop-P-butyl - 38 US EPA. 2002. Reregistration Eligibility Decision (RED): Oxyfluorfen - 39 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Oxyfluofren - 40 US EPA. 2007. Reregistration Eligibility Decision (RED): Dichlorprop-p - 41 US EPA. 1994. Reregistration Eligibility Decision (RED): Maleic hydrazide - 42 Pesticide Action Network (PAN) Pesticide Database: Maleic hydrazide - 43 US EPA. 2010. Reregistration Eligibility Decision (RED): Prodamine - 44 US EPA. 2009. Office of Pesticide Programs. BIOPESTICIDES REGISTRATION ACTION DOCUMENT: Iron Hedta - Kang, D., Park, S.K., Beane-Freeman, L., Lynch, C.F., Knott, C.E., Sandler, D.P., Hoppin, J.A., Dosemeci, M., Coble, J., Lubin, J. and Blair, A., 2008. Cancer incidence among pesticide applicators. Saghir, S.A., Charles, G.D., Bartels, M.J., Kan, L.H., Dryzga, M.D., Brzak, K.A. and Clark, A.J., 2008. Mechanism of trifluralin-induced thyroid tumors in rats. Toxicology letters, 180(1), pp.38-45. Kılıç, Z.S., Aydın, S., Bucurgat, Ü.Ü. and Başaran, N., 2018. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food and chemical toxicology, 113, pp.90-98. European Food Safety Authority: Conclusion regarding the peer review of the pesticide risk assessment of the active substance trifluralin. EFSA Scientific Report (2005) 28, 1-77. - 46 European Commission. Endocrine Disruptors: Study on Gathering Information on 435 Substances with Insufficient Data. Final Report. EU DG Environment: B4-3040/2001/325850/MAR/C2. BKH - 47 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: Trifluralin - 48 US EPA. 1996. Reregistration Eligibility Decision (RED): Trifluralin - 49 Knudsen, T.B., Martin, M.T., Kavlock, R.J., Judson, R.S., Dix, D.J. and Singh, A.V., 2009. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the US EPA's - 50 Stoker, T.E. and Kavlock, R.J., 2010. Pesticides as endocrine-disrupting chemicals. In Hayes' Handbook of Pesticide Toxicology (pp. 551-569). Academic Press. - 51 Colborn, T., D. Dumanoski, and J.P. Myers, 1996. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? New York: Dutton. - 52 US EPA. 1997. Reregistration Eligibility Decision (RED): Pendimethalin - 53 National Library of Medicine. PubChem Hazardous Substances Database: Pendimethalin - 54 Herrero-Hernández, E., Simón-Egea, A.B., Sánchez-Martín, M.J., Rodríquez-Cruz, M.S. and Andrades, M.S., 2020. Monitoring and environmental risk assessment of pesticide residues and some of - 55 US EPA. 1992. Reregistration Eligibility Decision (RED): Soap Salts - 56 McDonald, V.A., 2017. Evaluating Immunotoxicity of Quaternary Ammonium Compounds (Doctoral dissertation, Virginia Tech). - 57 Hrubec, T.C., Melin, V.E., Shea, C.S., Ferguson, E.E., Garofola, C., Repine, C.M., Chapman, T.W., Patel, H.R.,
Razvi, R.M., Sugrue, J.E. and Potineni, H., 2017. Ambient and dosed exposure to - 58 a. Melin, V.E., Potineni, H., Hunt, P., Griswold, J., Siems, B., Werre, S.R. and Hrubec, T.C., 2014. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reproductive b. Melin, V.E., Melin, T.E., Dessify, B.J., Nguyen, C.T., Shea, C.S. and Hrubec, T.C., 2016. Quaternary ammonium disinfectants cause subfertility in mice by targeting both male and female c. Melin, V.E. and Hrubec, T.C., 2015. Disinfectant Compounds ADBAC+ DDAC Exhibit Concentration and Temporally Dependent Reproductive Toxicity In-vitro and In-vivo. EFFECTS OF - 59 Herron, J.M., 2019. The Effects of Benzalkonium Chloride Disinfectants on Lipid Homeostasis and Neurodevelopment (Doctoral dissertation). - 60 Schmidt, L., Müller, J. and Göen, T., 2013. Simultaneous monitoring of seven phenolic metabolites of endocrine disrupting compounds (EDC) in human urine using gas chromatography with - 61 Registration Review Preliminary Problem Formulation for Environmental Fate, Ecological Risk, Endangered Species, and Human Health Drinking Water Exposure Assessments for Triclopyr, Triclopyr - 62 Luz, A., DeLeo, P., Pechacek, N. and Freemantle, M., 2020. Human health hazard assessment of quaternary ammonium compounds: Didecyl dimethyl ammonium chloride and alkyl (C12–C16) - 63 Egan, J.F., Barlow, K.M. and Mortensen, D.A., 2014, A meta-analysis on the effects of 2, 4-D and dicamba drift on sovbean and cotton. Weed Science, 62(1), pp.193-206. - 64 Beyond Pesticides ChemWatch Factsheets: Dicamba - 55 Zhu, L., Li, W., Zha, J. and Wang, Z., 2015. Dicamba affects sex steroid hormone level and mRNA expression of related genes in adult rare minnow (Gobiocypris rarus) at environmentally relevant. Cocco, P., 2002. On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects. Cadernos - Freydier, L. and Lundgren, J.G., 2016. Unintended effects of the herbicides 2, 4-D and dicamba on lady beetles. Ecotoxicology, 25(6), pp.1270-1277. Bohnenblust, E.W., Vaudo, A.D., Egan, J.F., Mortensen, D.A. and Tooker, J.F., 2016. Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environmental Toxicology and - 67 Dornelles, M.F. and Oliveira, G.T., 2016. Toxicity of atrazine, glyphosate, and guinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environmental Science and Pollution - 68 The Pesticide Management Education Program at Cornell University. Pesticide Active Ingredient Information: Isoxaben. - 69 US EPA, Office of Prevention, Pesticides and Toxic Substances, Reregistration Eligibility Decisions (REDs), Interim REDS (iREDs) and RED Factsheets: Isoxaben - 70 Assessment, A.T.R., ACUTE TOXICITY HAZARD-ECOTOXICITY. Hand, 1, p.64. - 71 Pesticide Action Network (PAN) Pesticide Database: Mecoprop-P - 72 University of California Statewide Integrated Pest Management Program. Pesticide Information: Dithiopyr. - 73 Consumer Product Safety. 2013. Pesticide Truths: Dithiopyr. - 74 Thurston County Health Department: Sodium Ferric HEDTA - 75 Haldane, S.L. and Davis, R.M., 2009. Acute toxicity in five dogs after ingestion of a commercial snail and slug bait containing iron EDTA. Australian veterinary journal, 87(7), pp.284-286. - 76 Federal Register. 2011. Sulfentrazone; Pesticide Tolerances. - Bianchi, J., Fernandes, T.C.C. and Marin-Morales, M.A., 2016. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture Silveira, M.A.D., Ribeiro, D.L., de Castro Marcondes, J.P. and d'Arce, L.P.G., 2016. Sulfentrazone and flumetsulam herbicides caused DNA damage and instability in Allium cepa test. International - 78 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Sulfentrazone (Ref: FMC 97285) - 79 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Quinclorac (Ref: BAS 514H) - 80 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Imazaquin (Ref: BAS 725H) - 81 Boulanger, M., Tual, S., Lemarchand, C., Guizard, A.V., Velten, M., Marcotullio, E., Baldi, I., Clin, B. and Lebailly, P., 2017. Agricultural exposure and risk of bladder cancer in the AGRIculture and Koutros, S., Silverman, D.T., Alavanja, M.C., Andreotti, G., Lerro, C.C., Heltshe, S., Lynch, C.F., Sandler, D.P., Blair, A. and Beane Freeman, L.E., 2016. Occupational exposure to pesticides and Pluth, T.B., Zanini, L.A.G. and Battisti, I.D.E., 2019. Pesticide exposure and cancer: an integrative literature review. Saúde em Debate, 43, pp.906-924. - 82 <u>Technical Department, Cyamamid (Japan) Ltd. 1999. Summary of Toxicity Studies on Imazaquin and it's Ammonium Salt.</u> U.S. Environmental Protection Agency. Chemical Assessment Summary. National Center for Environmental Assessment: Imazaquin. - 83 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Dichlorprop-P (Ref: BAS 044H) - Patel, D., Gyldenkærne, S., Jones, R.R., Becker, T., Olsen, S., Granström, C., Stayner, L.T. and Ward, M.H., 2018, September. Residential Proximity to Agricultural Herbicides during Pregnancy and International Agency for Research on Cancer (IARC), 1987. CHLOROPHENOXY HERBICIDES. - 85 Chemurgic Agricultural Chemicals, Inc. Product Label: Course Granular Ferrous sulfate monohydrate. - 86 New Jersey Department of Health. Hazardous Substances FactSheet: Ferrous Sulfate. - 87 US EPA. 2008. Summary Document for Iron salts. - 88 U.S. Geological Survey, Pesticides in the Nation's Streams and Ground Water, 1992-2001. - 89 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Trifluralin (Ref: EL 152) - 90 New-Aaron, M., Rhoades, M., Meza, J.L. and Wallman, J., 2017. An analysis of correlation between agrichemical contaminated wells and birth defects in Nebraska. - 91 Rendón-von Osten, J. and Dzul-Caamal, R., 2017. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, - 92 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Maleic hydrazide - 93 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Fatty Acids - 94 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Prodiamine (Ref: SAN 745H) - 95 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Imazapyr - 96 Beyond Pesticides. 1996. JOURNAL OF PESTICIDE REFORM: Imazapyr FactSheet - 97 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Diquat dibromide - 98 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Pendimethalin (Ref: AC 92553) - 99 California Department of Pesticide Regulations. 1994. RISK CHARACTERIZATION DOCUMENT: Diquat Dibromide - 100 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Fluazifop-P-butyl (Ref: R154875) - 101 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Oxyfluorfen (Ref: RH 2915) - 102 National Library of Medicine. PubChem Hazardous Substances Database: Acetic Acid - 103 US EPA. 1992. Reregistration Eligibility Decision (RED): Soap Salts - 104 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase D-limonene - 105 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Acetic acid - 106 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Pelargonic acid - 107 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Rosemary Oil - Marrakchi, S. and Maibach, H.I., 2006. Sodium lauryl sulfate-induced irritation in the human face: regional and age-related differences. Skin Pharmacology and Physiology, 19(3), pp.177-180. Moore, A.F., 1983. Final Report on the Safety Assessment of Sodium Lauryl Sulfate and Ammonium Lauryl Sulfate. International Journal of Toxicology, 2(7), pp.127-181. - 109 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Cinnamon Oil - 110 U.S. Environmental Protection Agency. BIOPESTICIDES REGISTRATION ACTION DOCUMENT: AMMONIUM NONANOATE - 111 Thurston County Health Department: Ammonium Nonanoate - 112 Thurston County Health Department: ferrous sulfate (monohydrate) - 113 Thurston County Health Department: pelargonic acid (nonanoic acid) - 114 University of Hertfordshire, 2021, PPDB: Pesticide Properties DataBase Imazapic - 115 Thurston County Health Department: Imazapic - 116 Pesticide Action Network. Pesticide Info: MCPA - International Agency for Research on Cancer (IARC) Summaries & Evaluations: CHLOROPHENOXY HERBICIDES (Group 2B) - 117 Extension Toxicology Network (EXTOXNET) Pesticide Information Profiles: MCPA - 118 US EPA, Office of Prevention, Pesticides and Toxic Substances, Reregistration Eligibility Decisions (REDs), Interim REDS (iREDs) and RED Factsheets: MCPA - 119 Thurston County Health Department: MCPA - 120 National Library of Medicine. PubChem Hazardous Substances Database. MCPA - 121 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase MCPA - 122 <u>University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Thymol Pesticide Action Network. Pesticide Info: Thymol</u> - 123 University of Hertfordshire. 2021. PPDB: Pesticide Properties DataBase Clove Oil - 124 Pesticide Action Network. Pesticide Info: Clove Oil